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Search for Gluinos and Scalar Quarks in p�p Collisions at
p

s = 1:8 TeV using the

Missing Energy plus Multijets Signature

(Dated: May 31, 2001)
We have performed a search for gluinos (eg) and squarks (eq) in a data sample of 84 pb�1

of p�p collisions at
p
s = 1.8 TeV, recorded by the Collider Detector at Fermilab, by

investigating the �nal state of large missing transverse energy and 3 or more jets, a
characteristic signature in R-parity-conserving supersymmetric models. The analysis has
been performed `blind', in that the inspection of the signal region is made only after the
predictions from Standard Model backgrounds have been calculated. Comparing the data
with predictions of constrained supersymmetric models, we exclude gluino masses below
195 GeV/c2 (95% C.L.), independent of the squark mass. For the case m

eq � m
eg, gluino

masses below 300 GeV/c2 are excluded.
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T. A�older,23 H. Akimoto,45 A. Akopian,37

M. G. Albrow,11 P. Amaral,8 D. Amidei,25

K. Anikeev,24 J. Antos,1 G. Apollinari,11 T. Arisawa,45

A. Artikov,9 T. Asakawa,43 W. Ashmanskas,8

F. Azfar,30 P. Azzi-Bacchetta,31 N. Bacchetta,31

H. Bachacou,23 S. Bailey,16 P. de Barbaro,36

A. Barbaro-Galtieri,23 V. E. Barnes,35 B. A. Barnett,19

S. Baroiant,5 M. Barone,13 G. Bauer,24 F. Bedeschi,33

S. Belforte,42 W. H. Bell,15 G. Bellettini,33

J. Bellinger,46 D. Benjamin,10 J. Bensinger,4

A. Beretvas,11 J. P. Berge,11 J. Berryhill,8 A. Bhatti,37

M. Binkley,11 D. Bisello,31 M. Bishai,11 R. E. Blair,2

C. Blocker,4 K. Bloom,25 B. Blumenfeld,19

S. R. Blusk,36 A. Bocci,37 A. Bodek,36 W. Bokhari,32

G. Bolla,35 Y. Bonushkin,6 D. Bortoletto,35 J.
Boudreau,34 A. Brandl,27 S. van den Brink,19

C. Bromberg,26 M. Brozovic,10 E. Brubaker,23

N. Bruner,27 E. Buckley-Geer,11 J. Budagov,9

H. S. Budd,36 K. Burkett,16 G. Busetto,31 A. Byon-
Wagner,11 K. L. Byrum,2 S. Cabrera,10 P. Cala�ura,23

M. Campbell,25 W. Carithers,23 J. Carlson,25

D. Carlsmith,46 W. Caskey,5 A. Castro,3 D. Cauz,42

A. Cerri,33 A. W. Chan,1 P. S. Chang,1 P. T. Chang,1

J. Chapman,25 C. Chen,32 Y. C. Chen,1 M. -T. Cheng,1

M. Chertok,5 G. Chiarelli,33 I. Chirikov-Zorin,9

G. Chlachidze,9 F. Chlebana,11 L. Christofek,18

M. L. Chu,1 Y. S. Chung,36 C. I. Ciobanu,28

A. G. Clark,14 A. Connolly,23 J. Conway,38

M. Cordelli,13 J. Cranshaw,40 R. Cropp,41

R. Culbertson,11 D. Dagenhart,44 S. D'Auria,15

F. DeJongh,11 S. Dell'Agnello,13 M. Dell'Orso,33

L. Demortier,37 M. Deninno,3 P. F. Derwent,11

T. Devlin,38 J. R. Dittmann,11 A. Dominguez,23

S. Donati,33 J. Done,39 M. D'Onofrio,33 T. Dorigo,16

N. Eddy,18 K. Einsweiler,23 J. E. Elias,11 E. En-
gels, Jr.,34 R. Erbacher,11 D. Errede,18 S. Errede,18

Q. Fan,36 R. G. Feild,47 J. P. Fernandez,11

C. Ferretti,33 R. D. Field,12 I. Fiori,3 B. Flaugher,11

G. W. Foster,11 M. Franklin,16 J. Freeman,11

J. Friedman,24 H. J. Frisch,7 Y. Fukui,22 I. Furic,24

S. Galeotti,33 A. Gallas,(��) 16 M. Gallinaro,37

T. Gao,32 M. Garcia-Sciveres,23 A. F. Gar�nkel,35

P. Gatti,31 C. Gay,47 D. W. Gerdes,25 P. Giannetti,33

P. Giromini,13 V. Glagolev,9 D. Glenzinski,11

M. Gold,27 J. Goldstein,11 I. Gorelov,27

A. T. Goshaw,10 Y. Gotra,34 K. Goulianos,37

C. Green,35 G. Grim,5 P. Gris,11 L. Groer,38 C. Grosso-
Pilcher,8 M. Guenther,35 G. Guillian,25 J. Guimaraes
da Costa,16 R. M. Haas,12 C. Haber,23 S. R. Hahn,11

C. Hall,16 T. Handa,17 R. Handler,46 W. Hao,40

F. Happacher,13 K. Hara,43 A. D. Hardman,35

R. M. Harris,11 F. Hartmann,20 K. Hatakeyama,37

J. Hauser,6 J. Heinrich,32 A. Heiss,20 M. Herndon,19

C. Hill,5 K. D. Ho�man,35 C. Holck,32 R. Hollebeek,32

L. Holloway,18 R. Hughes,28 J. Huston,26 J. Huth,16

H. Ikeda,43 J. Incandela,11 G. Introzzi,33 J. Iwai,45

Y. Iwata,17 E. James,25 M. Jones,32 U. Joshi,11

H. Kambara,14 T. Kamon,39 T. Kaneko,43 K. Karr,44

H. Kasha,47 Y. Kato,29 T. A. Kea�aber,35 K. Kelley,24

M. Kelly,25 R. D. Kennedy,11 R. Kephart,11

D. Khazins,10 T. Kikuchi,43 B. Kilminster,36

B. J. Kim,21 D. H. Kim,21 H. S. Kim,18

M. J. Kim,21 S. B. Kim,21 S. H. Kim,43 Y. K. Kim,23

M. Kirby,10 M. Kirk,4 L. Kirsch,4 S. Klimenko,12

P. Koehn,28 K. Kondo,45 J. Konigsberg,12

A. Korn,24 A. Korytov,12 E. Kovacs,2 J. Kroll,32

M. Kruse,10 S. E. Kuhlmann,2 K. Kurino,17

T. Kuwabara,43 A. T. Laasanen,35 N. Lai,8 S. Lami,37

S. Lammel,11 J. Lancaster,10 M. Lancaster,23



2

R. Lander,5 A. Lath,38 G. Latino,33 T. LeCompte,2

A. M. Lee IV,10 K. Lee,40 S. Leone,33 J. D. Lewis,11

M. Lindgren,6 T. M. Liss,18 J. B. Liu,36 Y. C. Liu,1

D. O. Litvintsev,11 O. Lobban,40 N. Lockyer,32

J. Loken,30 M. Loreti,31 D. Lucchesi,31 P. Lukens,11

S. Lusin,46 L. Lyons,30 J. Lys,23 R. Madrak,16

K. Maeshima,11 P. Maksimovic,16 L. Malferrari,3

M. Mangano,33 M. Mariotti,31 G. Martignon,31

A. Martin,47 J. A. J. Matthews,27 J. Mayer,41

P. Mazzanti,3 K. S. McFarland,36 P. McIntyre,39

E. McKigney,32 M. Menguzzato,31 A. Menzione,33

C. Mesropian,37 A. Meyer,11 T. Miao,11 R. Miller,26

J. S. Miller,25 H. Minato,43 S. Miscetti,13

M. Mishina,22 G. Mitselmakher,12 N. Moggi,3

E. Moore,27 R. Moore,25 Y. Morita,22 T. Moulik,35

M. Mulhearn,24 A. Mukherjee,11 T. Muller,20

A. Munar,33 P. Murat,11 S. Murgia,26 J. Nachtman,6

V. Nagaslaev,40 S. Nahn,47 H. Nakada,43 I. Nakano,17

C. Nelson,11 T. Nelson,11 C. Neu,28 D. Neuberger,20

C. Newman-Holmes,11 C.-Y. P. Ngan,24 H. Niu,4

L. Nodulman,2 A. Nomerotski,12 S. H. Oh,10

Y. D. Oh,21 T. Ohmoto,17 T. Ohsugi,17 R. Oishi,43

T. Okusawa,29 J. Olsen,46 W. Orejudos,23

C. Pagliarone,33 F. Palmonari,33 R. Paoletti,33

V. Papadimitriou,40 D. Partos,4 J. Patrick,11

G. Pauletta,42 M. Paulini,(�) 23 C. Paus,24

L. Pescara,31 T. J. Phillips,10 G. Piacentino,33

K. T. Pitts,18 A. Pompos,35 L. Pondrom,46 G. Pope,34

M. Popovic,41 F. Prokoshin,9 J. Proudfoot,2

F. Ptohos,13 O. Pukhov,9 G. Punzi,33 A. Rakitine,24

F. Ratnikov,38 D. Reher,23 A. Reichold,30

A. Ribon,31 W. Riegler,16 F. Rimondi,3 L. Ristori,33

M. Riveline,41 W. J. Robertson,10 A. Robinson,41

T. Rodrigo,7 S. Rolli,44 L. Rosenson,24 R. Roser,11

R. Rossin,31 A. Roy,35 A. Ruiz,7 A. Safonov,12

R. St. Denis,15 W. K. Sakumoto,36 D. Saltzberg,6

C. Sanchez,28 A. Sansoni,13 L. Santi,42 H. Sato,43

P. Savard,41 P. Schlabach,11 E. E. Schmidt,11

M. P. Schmidt,47 M. Schmitt,(��) 16 L. Scodellaro,31

A. Scott,6 A. Scribano,33 S. Segler,11 S. Seidel,27

Y. Seiya,43 A. Semenov,9 F. Semeria,3 T. Shah,24

M. D. Shapiro,23 P. F. Shepard,34 T. Shibayama,43

M. Shimojima,43 M. Shochet,8 A. Sidoti,31

J. Siegrist,23 A. Sill,40 P. Sinervo,41 P. Singh,18

A. J. Slaughter,47 K. Sliwa,44 C. Smith,19

F. D. Snider,11 A. Solodsky,37 J. Spalding,11

T. Speer,14 P. Sphicas,24 F. Spinella,33 M. Spiropulu,16

L. Spiegel,11 J. Steele,46 A. Stefanini,33 J. Strologas,18

F. Strumia, 14 D. Stuart,11 K. Sumorok,24 T. Suzuki,43

T. Takano,29 R. Takashima,17 K. Takikawa,43

P. Tamburello,10 M. Tanaka,43 B. Tannenbaum,6

M. Tecchio,25 R. Tesarek,11 P. K. Teng,1 K. Terashi,37

S. Tether,24 A. S. Thompson,15 R. Thurman-

Keup,2 P. Tipton,36 S. Tkaczyk,11 D. Toback,39

K. Tollefson,36 A. Tollestrup,11 D. Tonelli,33

H. Toyoda,29 W. Trischuk,41 J. F. de Troconiz,16

J. Tseng,24 N. Turini,33 F. Ukegawa,43 T. Vaiciulis,36

J. Valls,38 S. Vejcik III,11 G. Velev,11 G. Veramendi,23

R. Vidal,11 I. Vila,7 R. Vilar,7 I. Volobouev,23

M. von der Mey,6 D. Vucinic,24 R. G. Wagner,2

R. L. Wagner,11 N. B. Wallace,38 Z. Wan,38

C. Wang,10 M. J. Wang,1 B. Ward,15 S. Waschke,15

T. Watanabe,43 D. Waters,30 T. Watts,38 R. Webb,39

H. Wenzel,20 W. C. Wester III,11 A. B. Wicklund,2

E. Wicklund,11 T. Wilkes,5 H. H. Williams,32

P. Wilson,11 B. L. Winer,28 D. Winn,25 S. Wolbers,11

D. Wolinski,25 J. Wolinski,26 S. Wolinski,25 S. Worm,27

X. Wu,14 J. Wyss,33 W. Yao,23 G. P. Yeh,11 P. Yeh,1

J. Yoh,11 C. Yosef,26 T. Yoshida,29 I. Yu,21 S. Yu,32

Z. Yu,47 A. Zanetti,42 F. Zetti,23 and S. Zucchelli3

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529,

Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439

3 Istituto Nazionale di Fisica Nucleare, University of Bologna,

I-40127 Bologna, Italy
4 Brandeis University, Waltham, Massachusetts 02254

5 University of California at Davis, Davis, California 95616
6 University of California at Los Angeles, Los Angeles,

California 90024
7 Instituto de Fisica de Cantabria, CSIC-University of

Cantabria, 39005 Santander, Spain
8 Enrico Fermi Institute, University of Chicago, Chicago,

Illinois 60637
9 Joint Institute for Nuclear Research, RU-141980 Dubna,

Russia
10 Duke University, Durham, North Carolina 27708

11 Fermi National Accelerator Laboratory, Batavia, Illinois

60510
12 University of Florida, Gainesville, Florida 32611

13 Laboratori Nazionali di Frascati, Istituto Nazionale di

Fisica Nucleare, I-00044 Frascati, Italy
14 University of Geneva, CH-1211 Geneva 4, Switzerland

15 Glasgow University, Glasgow G12 8QQ, United Kingdom
16 Harvard University, Cambridge, Massachusetts 02138
17 Hiroshima University, Higashi-Hiroshima 724, Japan

18 University of Illinois, Urbana, Illinois 61801
19 The Johns Hopkins University, Baltimore, Maryland 21218

20 Institut f�ur Experimentelle Kernphysik, Universit�at

Karlsruhe, 76128 Karlsruhe, Germany
21 Center for High Energy Physics: Kyungpook National

University, Taegu 702-701; Seoul National University, Seoul

151-742; and SungKyunKwan University, Suwon 440-746;

Korea



3

22 High Energy Accelerator Research Organization (KEK),

Tsukuba, Ibaraki 305, Japan
23 Ernest Orlando Lawrence Berkeley National Laboratory,

Berkeley, California 94720
24 Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139
25 University of Michigan, Ann Arbor, Michigan 48109

26 Michigan State University, East Lansing, Michigan 48824
27 University of New Mexico, Albuquerque, New Mexico 87131

28 The Ohio State University, Columbus, Ohio 43210
29 Osaka City University, Osaka 588, Japan

30 University of Oxford, Oxford OX1 3RH, United Kingdom
31 Universita di Padova, Istituto Nazionale di Fisica Nucleare,

Sezione di Padova, I-35131 Padova, Italy
32 University of Pennsylvania, Philadelphia, Pennsylvania

19104
33 Istituto Nazionale di Fisica Nucleare, University and Scuola

Normale Superiore of Pisa, I-56100 Pisa, Italy
34 University of Pittsburgh, Pittsburgh, Pennsylvania 15260

35 Purdue University, West Lafayette, Indiana 47907
36 University of Rochester, Rochester, New York 14627
37 Rockefeller University, New York, New York 10021
38 Rutgers University, Piscataway, New Jersey 08855

39 Texas A&M University, College Station, Texas 77843
40 Texas Tech University, Lubbock, Texas 79409

41 Institute of Particle Physics, University of Toronto,

Toronto M5S 1A7, Canada
42 Istituto Nazionale di Fisica Nucleare, University of Trieste/

Udine, Italy
43 University of Tsukuba, Tsukuba, Ibaraki 305, Japan
44 Tufts University, Medford, Massachusetts 02155

45 Waseda University, Tokyo 169, Japan
46 University of Wisconsin, Madison, Wisconsin 53706

47 Yale University, New Haven, Connecticut 06520
(�) Now at Carnegie Mellon University, Pittsburgh,

Pennsylvania 15213
(��) Now at Northwestern University, Evanston, Illinois 60208

The Standard Model(SM) [1] accurately describes
physical phenomena down to scales of � 10�16 cm.
There are many extensions of the Standard Model to
smaller length scales, including extra gauge interac-
tions, new matter, new levels of compositeness, and
supersymmetry (SUSY). Of these, supersymmetry [2]
treats the bosonic and fermionic degrees of freedom
equally and provides a robust extension to the Stan-
dard Model . For simplicity the minimal construction
(MSSM) is often used to link SUSY with the Stan-
dard Model [3]. The most general MSSM would in-
duce proton decay with a weak-interaction lifetime; to
avoid this, baryon and lepton conservation are enforced
in the MSSM by postulating a new conserved quan-
tity, R-parity, R = (�1)3(B�L)+2s, where for each par-
ticle s is the spin, and B and L are the respective

baryon and lepton assignments. R-parity conservation
leads to characteristic SUSY signatures with missing
transverse energy in the �nal state due to the stable
lightest supersymmetric particle (LSP). We assume in
the search described below for the bosonic partners of
quarks (squarks) and the fermionic partners of gluons
(gluinos) that the LSP is weakly interacting, as is the
case for most of the MSSM parameter space.
We consider gluino and squark production within the

minimal supergravity model (mSUGRA)[3]. In this
model the entire SUSY mass spectrum is essentially
determined by only �ve unknown parameters: the com-
mon scalar mass at the GUT scale, M0; the common
gaugino mass at the GUT scale, M1=2; the common
trilinear coupling at the GUT scale, A0; the sign of
the Higgsino mixing parameter, sign(�); and the ratio
of the Higgs vacuum expectation values, tan�. Min-
imal SUGRA does not make predictions for the part
of the meq-meg mass parameter space where squarks of
the �rst two families are lighter than about 0.8 times
the mass of the gluino. Hence for meq < meg we use the
constrained MSSM [3] with the set of input parameters
being the mass of the gluino, meg; the CP -odd neutral
scalar Higgs mass, mA; the squark masses, meqi; the
slepton masses, m è

i
; the squark and slepton mixing

parameters, At(b)(�) ; and � and tan�.
We investigate whether the production and decay of

gluinos and scalar quarks is observable in the rate of
�3-jet events with large missing transverse energy at
the Collider Detector at Fermilab (CDF). The large
missing energy would originate from the two LSPs
in the �nal states of the squark and gluino decays.
The three or more hadronic jets would result from
the hadronic decays of the eq and/or eg. We use the
isajet Monte Carlo (MC) program [4] with tan� = 3
to generate datasets of squark and gluino events, and
the prospino program [5] to calculate the production
cross sections. To be conservative, only the �rst two
generations of squarks (~u; ~d; ~c; ~s) are assumed to be pro-
duced [6] in the general MSSM framework; we addition-
ally consider production of the bottom squark (~b) in the
mSUGRA case. The search is based on 84� 4 pb�1 of
integrated luminosity recorded with the CDF detector
during the 1994-95 Tevatron run.
The CDF detector is described in detail else-

where [7]. The momenta of charged particles are mea-
sured in the central tracking chamber (CTC), which is
positioned inside a 1.4 T superconducting solenoidal
magnet. Outside the magnet, electromagnetic and
hadronic calorimeters arranged in a projective tower
geometry cover the pseudorapidity region j�j < 4:2 [8]
and are used to identify jets. Jets are de�ned as lo-
calized energy depositions in the calorimeters and are
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FIG. 1: The E=T spectrum after the online trigger [12] and
the two stages of the data preselection. The numbers of
events surviving the �rst and second selections are 892,395
and 286,728, respectively. The variables EOUT ; NOUT are
energy and number of towers out of time [13].

reconstructed using an iterative clustering algorithm
with a �xed cone of radius �R �

p
��2 +��2 = 0:7

in ��� space [9]. Jets are ordered in transverse energy,
ET = E sin �, where E is the scalar sum of energy de-
posited in the calorimeter towers within the cone, and
� is the angle formed by the beam-line, the event ver-
tex [10], and the cone center.
The missing transverse energy is de�ned as

the negative vector sum of the transverse energy
in the electromagnetic and hadronic calorimeters,
~6ET = �

P
i(Ei sin �i)n̂i, where Ei is the energy of the

i-th tower, n̂i is a transverse unit vector pointing to the
center of each tower, and �i is the polar angle of the
tower; the sum extends to j�j < 3:6. The data sam-
ple was selected with an on-line trigger which requires
E=T � j~6ET j > 30 GeV.
We use a two-stage preselection to reject accelerator-

and detector-related backgrounds, beam halo, and cos-
mic ray events. The �rst stage is based on timing
and energy information in the calorimeter towers to re-
ject events out-of-time with a pp collision. The second
stage uses the event electromagnetic fraction (Fem) and
event charged fraction (Fch) to distinguish between real
and fake jet events [11]. The preselection requirements
and the corresponding missing transverse energy spec-
tra are presented in Figure 1. At least three jets with
ET � 15 GeV, at least one of them within j�j < 1:1,

are then required in events that pass the preselection.
A total of 107,509 events, predominantly from QCD
multijet production, survive the three-jet requirement.
The observed missing energy in QCD jet production

is largely a result of jet mismeasurements and detector
resolution. In a QCD multijet event with large miss-
ing energy, the highest ET jet is typically the most
accurately measured. When the second or third jet is
mismeasured because it lands partially in an uninstru-
mented region (a `gap'), the E=T is pulled close in � to
the mismeasured jet. A jet is considered non-�ducial
if it is within 0.5 rad in � of the E=T direction and also
points in � to a detector gap. The second and third
highest ET jets in an event are required to be �ducial.
We eliminate the residual QCD component by using
the correlation in the Æ�1 = j�leading jet � �E=T

j ver-

sus Æ�2 = j�second jet � �E=T
j plane. We accept events

with R1 > 0:75 rad and R2 > 0:5 rad, where R1 =p
Æ�22 + (� � Æ�1)2and R2 =

p
Æ�21 + (� � Æ�2)2.

To avoid potential a posteriori biases when searching
for new physics in the tails of the missing transverse
energy distribution, once we de�ne the signal candi-
date data sample we make it inaccessible. This anal-
ysis approach is often referred to as a `blind analysis'
and the signal candidate data sample as a `blind box'.
The `blind box' data are inspected only after the entire
search path has been de�ned by estimating the total
Standard Model backgrounds and optimizing the sen-
sitivity to the supersymmetric signal. We use three
variables to de�ne the signal candidate region : E=T ,
HT � ET (2) + ET (3) + E=T , and isolated track multi-
plicity, N iso

trk [14]. The `blind box' contains events with
E=T � 70 GeV, HT � 150 GeV, and N iso

trk=0. The large
missing transverse energy requirement for the de�ni-
tion of the box is motivated by the requirement that
the trigger be fully eÆcient [13]. The HT requirement
provides good discrimination between signal and back-
ground [13]. The N iso

trk requirement increases the sen-
sitivity of the search for all-hadronic �nal states by
signi�cantly reducing the backgrounds fromW=Z+jets
and top-antitop (t�t) events while retaining the signal
cascade decays in which a lepton is produced close to a
jet (non-isolated lepton). The analysis path is shown in
Table I. We reduce the background contribution from
W (! e�)+jets and t�t production by requiring the two
highest energy jets not be purely electromagnetic (jet
electromagnetic fraction fem <0.9). We further reduce
the contribution from QCD backgrounds (mismeasured
jets) by requiring the E=T vector not be closer than 0.3
rad in � to any jet in the event.
We estimate the W and Z boson backgrounds

by using a leading order perturbative QCD calcu-
lation for W (Z)+ jets as implemented in the vec-
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TABLE I: The data selection path for the E=T +� 3 jets
search. After the fourth step, all events that could fall in the
`blind box' are removed from the accounting. The events
tabulated in the following steps are only in the control bins.

Requirement Events
Preselection 286,728
Njet �3 (�R = 0:7, ET� 15 GeV) 107,509
Fiducial 2nd, 3rd jet 57,011
R1 >0.75 rad,R2 >0.5 rad 23,381

E=T�70 GeV, HT�150 GeV,
N iso
trk=0 `blind box'

ET (1) �70GeV
ET (2) �30GeV
j�j(1 or 2 or 3) < 1:1 6435
fem(1); fem(2) � 0.9 6013
L2 trigger requirement 4679
Æ�min(E=T � jet) � 0:3 rad 2737

bos Monte Carlo [15], enhanced with a coherent par-
ton shower evolution of both initial- and �nal-state
partons, hadronization, and a soft underlying event
model (vecbos+herwig [16]). Events with large
missing transverse energy and �3 jets in the �nal state
are expected primarily from Z(! ���)+ �3 jets and
W (! ��)+ �2 jets (the third jet originating from the
hadronic � decay) processes. The MC predictions for
events with � 3 jets are normalized to the observed
Z(! ee)+ jets data sample via the measured

Njet

Njet+1

ratio, where Njet is the number of jets. The ratio

� �
�(p�p!W (!e�)+jets)
�(p�p!Z(!e+e�)+jets)

is used to normalize the W

MC predictions. Assuming lepton universality, the pre-
dictions for the number of events with � 2{ and � 3{
jets from W and Z production and decay to all a-
vors are normalized to the data for Z(! e+e�)+ � 2
jets. By normalizing the MC predictions to data we
avoid large systematic e�ects due to the renormal-
ization scale, the choice of parton density functions,
initial- and �nal-state radiation, and the jet energy
scale. The total uncertainty (�10%) is then dominated
by the uncertainty on the luminosity measurement, the
uncertainty on the measured ratio

Njet

Njet+1 , and the un-

certainty on the predicted ratio � as a function of Njet.
We estimate the backgrounds from single top, t�t,

and diboson events with Monte Carlo predictions nor-
malized using the respective theoretical cross sec-
tion calculations for these processes. We generate
t�t events with the pythia MC program [17], nor-
malizing to the fully resummed theoretical cross sec-
tion �t�t = 5:06+0:13

�0:36 pb for mtop = 175 GeV=c2

[18]. We assign a total uncertainty of �18% on the
cross-section to take into account the uncertainty on
the top quark mass. The top quark can also be

TABLE II: Comparison of the Standard Model prediction
and the data in the bins neighboring bin 8, the `blind box'.
After the contents of cons were compared in detail to stan-
dard model predictions, we `opened the box'. We �nd 74
events in bin 8.

Bin De�nition EWK QCD All Data

E=T �70,HT�150,N iso
trk> 0 14 6.3 20�5 10

E=T �70,HT<150,N
iso
trk= 0 2.3 6.3 8.6�4.5 12

35<E=T <70,HT>150,N
iso
trk= 0 1.95 135 137�28 134

E=T >70,HT<150,N
iso
trk> 0 1.73 <0.1 1.73�0.3 2

35<E=T <70,HT>150,N
iso
trk> 0 14 9.4 23.4�6 24

35<E=T <70,HT<150,N
iso
trk= 0 5 413 418�69 410

35<E=T <70,HT<150,N
iso
trk> 0 3.3 28 31�10 35

E=T �70,HT�150,N iso
trk= 0 35 41 76�13 �

produced singly via W -gluon fusion and q�q annihi-
lation with cross sections of �Wg = 1:7 pb (� 17%),
and �W�!t�b = 0:73 pb(� 9%) [18]. We use the her-
wig [16] (W -gluon fusion) and pythia (q�q annihi-
lation) programs to generate the single top produc-
tion processes. We generate boson pair production
with the pythia MC and use the calculated cross
sections �WW = 9:5� 0:7 pb, �WZ = 2:6� 0:3 pb and
�ZZ = 1:0� 0:2 pb [18].
The data samples we use to study and normalize the

QCD Monte Carlo predictions consist of events col-
lected by on-line identi�cation of at least one jet with
transverse energy above trigger thresholds of 20 and
50 GeV, and with integrated luminosity of 0.094 pb�1

and 2.35 pb�1, respectively. The corresponding QCD
MC samples are generated using the herwig program
and a CDF detector simulation. The shapes of the E=T
and jet multiplicity distributions are in good agreement
with the data, as are the jet kinematic distributions.
The QCD predictions are absolutely normalized to the
data for Njet � 3. The total uncertainty on the QCD
background estimate is �15%, dominated by a 12%
uncertainty due to the detector resolution.
There are seven bins around the `blind box' formed

by inverting the requirements which de�ne it (i.e. by
changing the direction of the inequalities shown in the
bin de�nitions of Table II). We compare the Standard
Model background predictions in the bins around the
`blind box' with the data. The results are shown in
Table II. Of the 35 events from electroweak processes
predicted in the `blind box', �37% are expected from
Z ! ���+ � 3 jets, �20% from W ! ��+ � 2 jets,
�20% from the combined W ! e(�)�e(��)+ � 3 jets,
and �20% from t�t production and decays. We also
compare the kinematic properties between Standard
Model predictions and the data around the box and
�nd them to be in agreement [13].
To probe the SUSY parameter space in a simple and
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FIG. 2: Comparison in the `blind box' between data
(points) and Standard Model predictions (histogram) of
E=T , Njet, leading jet ET and HT distributions. There are
74 events in each of these plots, to be compared with 76�13
SM predicted events. Note that the E=T distribution is plot-
ted with a variable bin size; the bin contents are normalized
as labelled.

comprehensive way we divide the meq �meg plane into
four general regions : (A) meq > meg (mSUGRA, �veeq); (B) meq � meg (mSUGRA, �ve eq); (C) meq < meg
(MSSM, four eq); (D) meq � meg (MSSM, four eq). We
analyze representative points of each region and opti-
mize the E=T and HT requirements for increased sensi-
tivity to the signal using MC data. The ratio NSUSYp

NSM

is maximized in region A for E=T � 90 GeV and HT�
160 GeV; in region B for E=T � 110 and HT� 230 GeV;
in C for E=T � 110 and HT� 170 GeV; and in D for
E=T � 90 and HT� 160 GeV, where NSUSY is the num-
ber of signal events and NSM is the number of Stan-
dard Model background events. The signal eÆciency
ranges between 1% and 14% for the di�erent points in
the parameter space, and its total relative systematic
uncertainty (mostly due to parton density functions,
gluon radiation, renormalization scale and jet energy
scale) ranges between 10% and 15%.
In the `blind box', where we expect 76�13 Standard

Model events, we observe 74 events. In Figure 2 the
predicted Standard Model kinematic distributions are
compared with the distributions we observe in the data.
For the A/D, B and C region requirements, we ob-
serve 31, 5 and 14 events where we expect 33 � 7, 3.7
� 0:5 and 10.6 � 0.9 events respectively. Based on the
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FIG. 3: The 95% C.L. limit curve in the m
eq � m

eg plane
for tan� = 3; the hatched area is newly excluded by this
analysis. Results from some previous searches are also
shown(CDF [22], D� [23], LEP I [24]; the area at lower
masses in the plane has been previously excluded by the
UA1 and UA2 experiments [25, 26]. The region labelled
as m

eq < m
e�01

is theoretically forbidden as the squarks are

predicted to be lighter than the LSP.

observations, the Standard Model estimates and their
uncertainties, and the relative total systematic uncer-
tainty on the signal eÆciency, we derive the 95% C.L.
[19] upper limit on the number of signal events. The
bound is shown on the meq �meg plane in Figure 3. For
the signal points generated with mSUGRA the limit is
also interpreted in the M0 �M1=2 plane [13]. Studies
of the dependence on the value of tan� can be found
in [20, 21].
In conclusion, a search for gluinos and squarks

in events with large missing energy plus multi-
jets excludes at 95% C.L. gluino masses below 300
GeV/c2 for the casemeq � meg, and below 195 GeV/c2,
independent of the squark mass, in constrained super-
symmetric models. This is a signi�cant extension of
previous bounds.
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